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Introduction

Guanine-rich sequences exist in many important DNA re-
gions, such as promoter regions of some oncogenes, centro-
meres, and especially telomeres. Telomeres are repeats of
G-rich sequences consisting of (TGGGGT)n in Tetrahymen,
(TTAGGG)n in human, and (TTTTGGGG)n in Oxytri-
cha.[1,2] The oligonucleotides with G-rich sequences can
form four-stranded G-quadruplexes (Figure 1A).[3,4] Telo-
meric DNA sequences have several functions essential for
genome integrity, and the formation of these quadruplexes
has been shown to decrease the activity of the enzyme telo-
merase, which is responsible for elongating telomeres.[5]

Therefore, the G-quadruplex structures have become a po-
tential target for the development of genetic-based anticanc-
er drugs.[6,7] Understanding the factors affecting the forma-
tion and stability of G-quadruplexes could also contribute

considerably to the construction of potential nanomolecular
devices.[8–10]

Although NMR, X-ray, and CD spectroscopies have pro-
vided the structure information of G-quadruplexes, they
cannot be applied in some complicated cases, such as mix-
tures of several different quadruplexes. Accordingly, in this
study, we utilized electrospray ionization mass spectrometry
(ESI-MS)[11–15] to investigate the formation and stability of
G-quadruplexes, as this offers direct views of distinct quad-
ruplex peaks rapidly and simultaneously. Meanwhile, in con-
sideration of the stabilization of a G-quadruplex by binding
molecules, we investigated the binding affinity of two DNA-
recognition molecules, polyamide (1) and Tel01 (2), with the
G-quadruplexes (Figure 1B). Polyamide is a novel DNA-rec-
ognition molecule and has good cell permeation, whereas
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Figure 1. A) Three important G-quadruplex structures. B) Structures of
two DNA binders. Im: N-methylimidazole; b : b-alanine; Dp: 3-(di-
methyl ACHTUNGTRENNUNGamino)propylamine.
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Tel01 contains a huge aromatic system in favor of p stacking
with G-quartets.[16–19]

Results and Discussion

Formation of the G-quadruplexes : Firstly, we chose 15 6-nt
oligonucleotides with different sequences and studied the
formation of the G-quadruplexes (Table 1). The ESI-MS
spectra revealed only three G-quadruplex peaks associated
with these sequences; dACHTUNGTRENNUNG(TGGGGT) [Q(1)], dACHTUNGTRENNUNG(AGGGGA)
[Q(2)], and dACHTUNGTRENNUNG(CGGGGC) [Q(3)] (Figure 2), indicating that

formation of a parallel tetramer quadruplex requires at least
four continuous guanines in the 6-nt sequence. These experi-
mental observations are consistent with the relative binding
free energies (DDG, also listed in Table 1) estimated by
computational modeling at T=298.15 K and P=1 atm (see
Computational Modeling section for details).

The DDG value for a given G-quadruplex Q(X) formed
from the corresponding single strand S(X) was evaluated
relative to the binding free energy of Q[d ACHTUNGTRENNUNG(CGGGGC)], that
is, DDG{Q(X)}=DG{Q(X)}�DG{Q[d ACHTUNGTRENNUNG(CGGGGC)]}=
[G{Q(X)}�4PG{S(X)}]�[G{Q[d ACHTUNGTRENNUNG(CGGGGC)]}�4PG{S[d-
ACHTUNGTRENNUNG(CGGGGC)]}]. In this equation, DG{Q(X)} and DG{Q[d-

ACHTUNGTRENNUNG(CGGGGC)]} are the Gibbs
binding free energies of quad-
ruplexes Q(X) and Q[d-
ACHTUNGTRENNUNG(CGGGGC)], respectively.
G{Q(X)} and G{Q[d-
ACHTUNGTRENNUNG(CGGGGC)]} represent the
Gibbs free energies of quadru-
plexes Q(X) and Q[d-
ACHTUNGTRENNUNG(CGGGGC)], respectively,
and G{S(X)} and G{S[d-
ACHTUNGTRENNUNG(CGGGGC)]} refer to the
Gibbs free energies of single
strands S(X) and S[d-
ACHTUNGTRENNUNG(CGGGGC)], respectively.
The Gibbs free energies of all
the structures were calculated
by using the molecular me-
chanics Poisson–Boltzmann
surface-area (MM-PBSA)
free-energy approach imple-
mented in the popular
AMBER 8 program suite.[20]

All of the quadruplex struc-
tures were energy-minimized
prior to performing the MM-
PBSA free-energy calculations.
The calculated relative binding
free energies (Table 1) reveal
that the quadruplexes corre-
sponding to Q(1) and Q(2) are
more stable than the quadru-
plex corresponding to Q(3),
and that all of the other 12 hy-
pothetical quadruplexes are
less stable than the quadruplex
corresponding to Q(3). These
results suggest the stability
order of the 15 hypothesized
quadruplexes to be Q(2)>
Q(1)>Q(3)>all others, which
explains why only three quad-
ruplexes corresponding to
Q(1), Q(2), and Q(3) were ob-
served, and why Q(2) is the
most stable quadruplex ob-

Table 1. Quadruplex formation and the calculated relative binding free energies (DDG [kcalmol�1] at T=

298.15 K and P=1 atm) of the hypothesized G-quadruplexes.

Sequence G ACHTUNGTRENNUNG(Complex) GACHTUNGTRENNUNG(Monomer) G ACHTUNGTRENNUNG(NH4
+) DDG

ACHTUNGTRENNUNG(calcd)[a]
Structure
observed[b]

5’-AGGGGA-3’ �5936.2 �1417.0 �107.1 �57.9 Q(2)
5’-TGGGGT-3’ �5587.3 �1339.2 �107.1 �20.1 Q(1)
5’-CGGGGC-3’ �6549.0 �1584.7 �107.1 0 Q(3)
5’-TTGGTT-3’ �4783.0 �1149.0 �107.2 23.8 S, D
5’-TTGGGT-3’ �5144.5 �1241.6 �107.2 32.8 S, D
5’-TCGGGT-3’ �5625.7 �1363.4 �107.1 38.3 S, D
5’-ACCCCA-3’ �6245.2 �1520.2 �107.1 45.9 S, D
5’-TGCCGT-3’ �5682.9 �1385.4 �107.0 68.5 S, D
5’-TCGGCT-3’ �5708.6 �1393.8 �107.1 76.8 S, D
5’-CCGGCC-3’ �6661.5 �1634.5 �107.2 87.0 S, D
5’-TCGCCT-3’ �5796.2 �1420.6 �107.0 96.2 S, D
5’-TGTGTT-3’ �4717.7 �1154.7 �107.0 111.3 S, D
5’-TGTGGT-3’ �5087.3 �1248.1 �107.0 115.3 S, D
5’-TGCGGT-3’ �5538.3 �1365.6 �107.1 134.4 S, D
5’-TCGCGT-3’ �5639.7 �1394.7 �107.2 149.8 S, D

[a] The DDG value was relative to the binding free energy of the G-quadruplex formed from d ACHTUNGTRENNUNG(CGGGGC)
[Q(3)]. [b] Q(X)=quadruplex; S= single strand; D=duplex; from ESI-MS spectra.

Figure 2. ESI mass spectra of four potential 6-nt quadruplex sequences. S, single strand; D, duplex; Q, quadru-
plex. A) TGGGGT; B) AGGGGA; C) CGGGGC; D) TTGGGT.
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served. This may also be because A moieties have the ability
to stack above and below the G-quartets, thereby stabilizing
the quadruplex, whereas C and T bases stack less readily
than A.

Furthermore, based on the quadruplex peaks (5� charge
state of TGnT, n=4–8) in mass spectra, we found that the
number of ammonium ions increased in parallel with the
number of guanines, according to the “n�1” rule (n=
number of guanines), indicating that each ammonium ion is
located between the G-tetrads.

Mixtures of oligonucleotides with different sequences : Upon
mixing d ACHTUNGTRENNUNG(TGGGGT), d ACHTUNGTRENNUNG(AGGGGA), and d ACHTUNGTRENNUNG(CGGGGC), no
heteroquadruplex was observed; three peaks (m/z=1476.8,
1500.0, and 1514.3 corresponding to Q(1), Q(2), and Q(3),
respectively) are presented in the ESI mass spectrum (Fig-
ure 3A). In addition, the ESI mass spectra recorded for the
mixtures of dACHTUNGTRENNUNG(TGGGGT), d ACHTUNGTRENNUNG(AGGGGA), and d-
ACHTUNGTRENNUNG(CGGGGC) with other similar 6-nt oligonucleotides also
did not reveal any peak associated with a heteroquadruplex
(Figure 3B). This interesting “self-association” phenomenon
is the first observed by using mass spectrometry, which is
the only way to investigate the respective structures in a
mixture of several oligonucleotides.

To better understand this experimental observation, we
also used the aforementioned MM-PBSA free-energy ap-
proach to estimate the free energies (DG) of various reac-
tions (Table 2), such as the following (as examples):

3f½Sð1Þ�4g þ f½Sð2Þ�4g ! 4f½Sð1Þ�3½Sð2Þ�1g ð1Þ

f½Sð1Þ�4g þ 3f½Sð2Þ�4g ! 4f½Sð1Þ�1½Sð2Þ�3g ð2Þ

3f½Sð1Þ�4g þ f½Sð3Þ�4g ! 4f½Sð1Þ�3½Sð3Þ�1g ð3Þ

f½Sð1Þ�4g þ 3f½Sð3Þ�4g ! 4f½Sð1Þ�1½Sð3Þ�3g ð4Þ

3f½Sð2Þ�4g þ f½Sð3Þ�4g ! 4f½Sð2Þ�3½Sð3Þ�1g ð5Þ

f½Sð2Þ�4g þ 3f½Sð3Þ�4g ! 4f½Sð2Þ�1½Sð3Þ�3g ð6Þ

In reactions (1) to (6), S(1), S(2), and S(3) represent the
single strands (i.e. , TGGGGT, AGGGGA, and CGGGGC)
that form the heteroquadruplexes QACHTUNGTRENNUNG(1,2), QACHTUNGTRENNUNG(1,3), and Q-
ACHTUNGTRENNUNG(2,3), respectively. The calculated free energies of all these
reactions are positive values, for example, DG(1)=27.4,
DG(2)=45.3, DG(3)=19.8, DG(4)=3.4, DG(5)=113.2, and
DG(6)=39.2 kcalmol�1. Both the calculated and the experi-
mental data demonstrate consistently that the G-rich strands
prefer to employ “self-association” in the formation of the
G-quadruplexes rather than hybridized integration. Similar-
ly, our current study with 8–12-nt oligonucleotides also pro-
vided proof of these phenomena.

Binding affinities of binders with the quadruplexes: To ex-
amine the effects of binding molecules on the stabilization
of the G-quadruplex, the binding stoichiometries and affini-
ties were studied by mixing quadruplex Q(1) with binders 1
and 2 in different molar ratios ranging from Q(1):binder=
1:1 to 1:8 (Figure 4A,B). For 1, the ESI-MS spectra show
ion peaks for [Q(1)+1binder], [Q(1)+2binders], [Q(1)+
3binders], and [Q(1)+4binders]; and in the case of 2,
[Q(1)+3binders] and [Q(1)+4binders] ions were not ob-

Figure 3. ESI mass spectra showing “self-association” formation of G-
quadruplexes. S, single strand; D, duplex; Q, quadruplex. A) Mixture of
TGGGGT, AGGGGA, and CGGGGC; B) mixture of TGGGGT and
TTGGGT.

Table 2. The calculated absolute free-energy changes [kcalmol�1] of the
hypothesized heteroquadruplexes.

Structure[a] E ACHTUNGTRENNUNG(Total) TS G DG

5’-AGGGGA-3’ complex �5296.72 639.49 �5936.21 –
5’-CGGGGC-3’ complex �5922.64 626.38 �6549.02 –
5’-TGGGGT-3’ complex �4950.09 637.25 �5587.34 –
3A1C complex �5429.05 632.07 �6061.12 113.17
3A1T complex �5200.84 636.83 �5837.67 45.29
3C1A complex �5761.04 624.98 �6386.02 39.19
3C1T complex �5679.44 628.29 �6307.74 3.44
3T1A complex �5030.84 636.86 �5667.70 27.43
3T1C complex �5188.70 634.10 �5822.81 19.80

[a] A represents strand 5’-AGGGGA-3’, T refers to 5’-TGGGGT-3’, and
C represents 5’-CGGGGC-3’. The 5’-AGGGGA-3’ complex consists of
four 5’-AGGGGA-3’ strands. The 3A1C complex consists of three 5’-
AGGGGA-3’ strands and one 5’-CGGGGC-3’ strand. Other complexes
are defined in the same way. The positive free-energy changes suggest
that only homoquadruplexes can exist, as the heteroquadruplexes tend to
form homoquadruplexes.
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served, even at higher molar ratios. Here, the abundance
ratio (Rm, m=1–4; m=number of binders in the complex)
of the complex to Q(X), [complex]5�/[Q(X)]5�, was defined as
a unique parameter for the evaluation of the binding affini-
ties of 1 and 2, and was calculated directly from the abun-
dances in ESI mass spectra. The Rm was determined at four
different molar ratios and the results are shown in Table 3.
The Rm value of 2 is much greater than that of 1. This indi-
cates that 2 is an excellent binder for the quadruplex. For
Q(2) and Q(3), similar binding orders were obtained. By
comparing the binding of three quadruplexes with 2 (Fig-
ure 4B–D), we found that Q(2)>Q(1)>Q(3). In addition,

our further study indicated that 2 had a specific selectivity
to quadruplexes in the presence of duplex telomeric DNA.

Stabilization of complexes of G-quadruplex and binders :
The stabilization of complexes of G-quadruplex and binders
1 or 2 was investigated by performing assays at increasing
temperature. As the capillary temperature of mass spec-
trometry was increased from 70 to 400 8C (400 8C is the
upper limit of the capillary temperature, and below 70 8C

the effect of desolvation is significant), single-stranded ions
were observed, and the signals of the quadruplex and com-
plex ions became weaker and finally disappeared. Here, P is
defined as the proportion of single-stranded DNA for the
evaluation of the thermodynamic stability of the complexes

P ¼
X

½SðXÞ�n�=f
X

½QðXÞ�n� þ
X

½complex�n�g

in which n=4 and 5. If P=1, the corresponding temperature
(TP=1) was taken as a parameter to evaluate the stability.
The TP=1 values are shown in Table 4. The data in Table 4
show that the binding molecules can stabilize the quadru-

plex–complex structures. The
stronger the quadruplex–
binder interaction, the more
stable the complex. Moreover,
the thermal-stability order of
the three quadruplexes can be
evaluated as Q(2)>Q(1)>
Q(3), and the stabilization of
[Q(2)+2]5� is the highest of
these complexes.

Conclusion

We utilized electrospray ioni-
zation mass spectrometry
(ESI-MS) to investigate the
formation and stability of G-
quadruplexes. The ESI-MS
spectra revealed only three G-
quadruplex peaks associated
with these sequences, and the
stability order was evaluated
to be Q(2)>Q(1)>Q(3). Both

the calculated and the experimental data demonstrate con-
sistently that the G-rich strands prefer to employ “self-asso-
ciation” in the formation of the G-quadruplexes rather than
hybridized integration. Furthermore, we compared the bind-
ing affinity of two binders (1 and 2) with the G-quadruplex-
es, and determined that the orders of both the binding and
stability of the G-quadruplexes are 2>1. This method can
also be applied to other telomeric DNA structures. Our cur-
rent studies focusing on human telomeric DNA have provid-
ed some significant results that will provide a valuable basis
for the future rational design of genetic-based anticancer
drugs.

Figure 4. ESI mass spectra of quadruplexes with the binders, molar ratio=1:1. A) Q(1) with ImImImbDp (1);
B) Q(1) with Tel01 (2); C) Q(2) with Tel01 (2); D) Q(3) with Tel01 (2).

Table 3. The abundance ratios Rm of complexes with Q(1) at four differ-
ent molar ratios.[a]

Molar ratio 1 2
R1 R2 R3 R4 R1 R2

1:1 0.47 0.13 0.00 0.00 3.33 0.00
1:2 0.88 0.43 0.12 0.00 9.09 2.27
1:4 1.22 0.62 0.24 0.11 nq nq
1:8 3.13 1.94 0.88 0.56 nq nq
average 1.42 0.78 0.31 0.17 6.21 1.14

[a] nq=not quantified.

Table 4. The TP=1 values determined for the quadruplexes and the quad-
ruplex–binder complexes.

TP=1 TP=1 TP=1

Q(1) 300 Q(2) 310 Q(3) 240
Q(1)+1 310 Q(2)+1 320 Q(3)+1 280
Q(1)+2 330 Q(2)+2 340 Q(3)+2 310
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Experimental Section

Oligodeoxyribonucleotides : Single-stranded oligonucleotides were pur-
chased from Augct (Beijing, China) and were dissolved directly in deion-
ized water. The resulting DNA stock solution was 500 mm in deionized
water, which ensured that the mixing assays started with single strands.

Ligand synthesis : A haloform reaction was used to synthesize polyamide
(1) (yield 65%), and the purification and characterization of 1 was per-
formed according to our previous paper.[19] Perylene derivative Tel01 (2)
was synthesized by refluxing a mixture of 3,4,9,10-perylenetetracarboxylic
dianhydride and 3-(dimethylamino)propylamine (Dp) (yield 86%).

Mixing and binding assays : Oligonucleotides were stored as stock solu-
tions in deionized water. After thawing, each DNA stock solution
(2.0 mL) was mixed, then diluted with methanol/100 mm ammonium ace-
tate (20:80, v/v) to a volume of 40 mL (final conc. of each DNA=25 mm).
Binding molecules were dissolved in a mixture of methanol/water (50:50,
v/v) to a concentration of 500 mm. Each DNA solution (2.0 mL) was
mixed with 2.0–16 mL of binder solutions, and then diluted with metha-
nol/100 mm ammonium acetate (20:80, v/v) to a final volume of 40 mL.
Methanol was added to obtain a good spray.[12]

Mass spectrometry : ESI-MS spectra were obtained in the negative-ion
mode by using a Thermo Finnigan LCQ Deca XP Plus ion-trap mass
spectrometer (San Jose, CA). The oligonucleotide solutions were infused
directly into the ion source at a flow rate of 2 mLmin�1. The electrospray
source conditions were: 2.0–2.5 kV spray voltage, 100 8C capillary temper-
ature, and a double-sheath gas (20 arb) to ensure efficient desolvation.
Data were collected and analyzed by using the Xcalibur software devel-
oped by Thermo Finnigan, and ten scans were averaged for each spec-
trum.

Computational modeling : The X-ray structure of parallel-stranded gua-
nine tetraplex (PDB entry 244D) was selected as the template to con-
struct the initial structures used for the molecular mechanics Poisson–
Boltzmann surface-area (MM-PBSA)[21,22] calculations. Prior to the MM-
PBSA energy calculations, the structures of 15 hypothesized G-quadru-
plexes and six heteroquadruplexes were constructed by using the LEaP
module of the AMBER 8 program suite.[20] The restrained electrostatic-
potential (RESP) charges used for the NH4

+ ion were calculated at the
HF/6–31G* level by using the Gaussian 03 program.[23] Each of the struc-
tures was fully energy-minimized. After the energy minimizations, the
solute energies were evaluated without using any cutoff for all of the
structures. The same structures were used in the PBSA solvation-energy
calculations by using the PBSA module of the AMBER 8 program suite.
In the PBSA calculations, the grid size used was defined as 0.5 T and the
radius of the probe atom was set to 1.4 T. The charges used in the Pois-
son–Boltzmann (PB) calculations were read from the AMBER topology
parameters. The solvent-accessible surface (SAS) was obtained by using
the molsurf module of the AMBER 8 program suite. In addition, the en-
tropy contributions from the translations, rotations, and vibrations to the
binding free energy were calculated by performing the standard normal-
mode analyses on the energy-minimized structures by using the n-mode
module of the AMBER 8 program suite. The Gibbs free energy G for
each structure was calculated by using G=EMM+GPB+GSA�TS (see the
AMBER 8 user manual for details).[20] The calculated free energies and
the binding free energies are listed in Tables 1 and 2.
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